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Hour Exam 2: Wednesday, October 25th
• In-class, covering waves, electromagnetism, and relativity

• Twenty multiple-choice questions

• Will cover: Chapters 8, 9 10 and 11

Lecture material

• You should bring

– 1 page notes, written single sided

– #2 Pencil and a Calculator

– Review Monday October 23rd

– Review test online on Monday

HW#6:

Chap 10 Conceptual: 36, 42 Problem 7, 9

Chap 11 Conceptual: 5, 10

Homework - Exam
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From last time…
• Einstein’s Relativity

– All laws of physics identical in inertial ref. frames

– Speed of light=c in all inertial ref. frames

• Consequences

– Simultaneity: events simultaneous in one frame

will not be simultaneous in another.

– Time dilation

– Length contraction

– Relativistic invariant: x2-c2t2 is ‘universal’ in that

it is measured to be the same for all observers
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Review: Time Dilation and Length Contraction

T = Tp =
Tp

1 v 2 c 2
Time in other

frame

Time in object’s rest

frame

L =
Lp

= Lp 1
v 2

c 2
Length in other
frame

Length in object’s
rest frame

Times measured in other

frames are longer

(time dilation)

Distances measured in other

frames are shorter

(length contraction)

• Need to define the rest frame

and the “other” frame which is moving with

respect to the rest frame
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Relativistic Addition of Velocities

vdb

Frame b
Frame d

vad

Object a

vab =
vad + vdb

1+
vadvdb
c 2

• As motorcycle velocity

approaches c,

vab also gets closer and

closer to c

• End result: nothing

exceeds the speed of

light

Phy107 Fall 2006 5

Observing from a new frame

• In relativity these events
will look different in
reference frame moving
at some velocity

• The new reference
frame can be
represented as same
events along different
coordinate axes

Coordinates in

original frame

Coordinates in

new frame

ct’

x’

x

ct

New frame moving

relative to original
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Time interval = 1.413 yrsTime interval = 4.526 yrs

Event separation = 0 LYEvent separation = 4.3 LY

Ship FrameEarth Frame

A relativistic invariant quantity

  

separation( )
2

c 2 time  interval( )
2

= 0 c 1.413yrs( )( )
2

= 2.0  LY 2

  

separation( )
2

c 2 time  interval( )
2

= 4.3( )
2

c 4.526yrs( )( )
2

= 2.0  LY 2

• The quantity (separation)2-c2(time interval)2 is

the same for all observers

• It mixes the space and time coordinates
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‘Separation’ between events

• Views of the same
cube from two
different angles.

• Distance between
corners (length of red
line drawn on the flat
page) seems to be
different depending
on how we look at it.

• But clearly this is just because we are not considering the

full three-dimensional distance between the points.

• The 3D distance does not change with viewpoint.
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Newton again

• Fundamental relations of Newtonian physics

– acceleration = (change in velocity)/(change in time)

– acceleration = Force / mass

– Work = Force x distance

– Kinetic Energy = (1/2) (mass) x (velocity)2

– Change in Kinetic Energy = net work done

• Newton predicts that a constant force gives

– Constant acceleration

– Velocity proportional to time

– Kinetic energy proportional to (velocity)2
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Forces, Work, and Energy in Relativity
What about Newton’s laws?

• Relativity dramatically altered our perspective of

space and time

– But clearly objects still move,

spaceships are accelerated by thrust,

work is done,

energy is converted.

• How do these things work in relativity?
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Applying a constant force

• Particle initially at rest,

then subject to a constant force starting at t=0,

     momentum =momentum = (Force) x (time)

• Using momentum = (mass) x (velocity),

Velocity increases without bound as time increases

Relativity says no. 

The effect of the force gets smaller and smaller

 as velocity approaches speed of light

Phy107 Fall 2006 11

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

S
P

E
E

D
 / 

S
P

E
E

D
 O

F
 L

IG
H

T

TIME

Newton

Einstein

v

c
=

t / to

t / to( )
2

+1
, to =

F

moc

Relativistic speed of particle

subject to constant force

• At small velocities

(short times) the

motion is described

by Newtonian physics

• At higher velocities,

big deviations!

• The velocity never

exceeds the speed of

light
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Momentum in Relativity

• The relationship between momentum and

force is very simple and fundamental

  

change  in  momentum

change  in  time
= Force

Momentum is constant for zero force

and

This relationship is preserved in relativity
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Relativistic momentum

• Relativity concludes that the Newtonian

definition of momentum

(pNewton=mv=mass x velocity)

is accurate at low velocities,

but not at high velocities

The relativistic momentum is:

 
prelativistic = mv

=
1

1 (v /c)2

mass

velocity

Relativistic gamma
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Was Newton wrong?

• Relativity requires a different concept of
momentum

• But not really so different!

• For small velocities << light speed
1, and so prelativistic  mv

• This is Newton’s momentum

• Differences only occur at velocities that are a substantial
fraction of the speed of light

prelativistic = mv

=
1

1 (v /c)2
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Relativistic Momentum
• Momentum can be increased

arbitrarily, but velocity never

exceeds c

• We still use

• For constant force we still have

momentum = Force x time,

but the velocity never exceeds c

• Momentum has been redefined

prelativistic = mv =
mv

1 (v /c)2
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v

c
=

p / po

p / po( )
2

+1
, po = moc

  

change  in  momentum

change  in  time
= Force

Newton’s
momentum

Relativistic momentum for

different speeds.
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How can we understand this?

• acceleration

much smaller at high speeds than at low speeds

• Newton said force and acceleration related by mass.

• We could say that mass increases as speed increases.

  
=

change in velocity

change in time

 

 
 

 

 
 

prelativistic = mv = m( )v mrelativisticv

• Can write this

— mo  is the rest mass.

— relativistic mass m depends on velocity

prelativistic = mov = mo( )v mv

=
1

1 (v /c)2
,   m = mo
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Relativistic mass

• The the particle

becomes extremely

massive as speed
increases ( m= mo )

• The relativistic

momentum has new
form ( p= mov )

• Useful way of thinking

of things remembering

the concept of inertia
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Example

• An object moving at half the speed of light

relative to a particular observer has a rest

mass of 1 kg. What is it’s mass measured by

the observer?

=
1

1 (v /c)2
=

1

1 (0.5c /c)2
=

1

1 0.25

=
1

0.75
=1.15

So measured mass is 1.15kg
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Question

A object of rest mass of 1 kg is moving at 99.5%

of the speed of light.

What is it’s measured mass?

A. 10 kg

B. 1.5 kg

C. 0.1 kg
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Relativistic Kinetic Energy

• Might expect this to change in relativity.

• Can do the same analysis as we did with

Newtonian motion to find

• Doesn’t seem to resemble Newton’s result at all

• However for small velocities, it does reduce to

the Newtonian form

KErelativistic = 1( )moc
2

KErelativistic

1

2
mov

2  for  v << c
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Relativistic Kinetic Energy

• Can see this graphically

as with the other

relativistic quantities

• Kinetic energy gets

arbitrarily large as

speed approaches speed

of light

• Is the same as

Newtonian kinetic

energy for small speeds.
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Total Relativistic Energy

• The relativistic kinetic energy is

KErelativistic = 1( )moc
2

= moc
2 moc

2

Constant,

independent of

velocity

Depends on

velocity

•Write this as

moc
2

= KErelativistic + moc
2

Total energy Rest energy
Kinetic energy
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Mass-energy equivalence

• This results in Einstein’s famous relation

• This says that the total energy of a particle
 is related to its mass.

• Even when the particle is not moving it has
energy.

• We could also say that mass is another form of
energy

– Just as we talk of chemical energy, gravitational
energy, etc, we can talk of mass energy

E = moc
2,   or   E = mc 2
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Example

• In a frame where the particle is at rest,

its total energy is E = moc
2

• Just as we can convert electrical energy to

mechanical energy, it is possible to tap mass

energy

• A 1 kg mass has (1kg)(3x108m/s)2=9x1016 J of

energy

– We could power

30 million 100 W light bulbs for one year!

(~30 million sec in 1 yr)
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Nuclear Power

• Doesn’t convert whole

protons or neutrons to energy

• Extracts some of the binding

energy of the nucleus

– 90Rb and 143Cs + 3n have less

rest mass than 235U +1n: E = mc2
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Energy and momentum

• Relativistic energy is

• Since  depends on velocity, the energy is measured to be

different by different observers

• Momentum also different for different observers

– Can think of these as analogous to space and time, which individually

are measured to be different by different observers

• But there is something that is the same for all observers:

• Compare this to our space-time invariant

E = moc
2

E 2 c 2p2 = moc
2( )
2

= Square of rest energy

x 2 c 2t 2
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A relativistic perspective

• The concepts of space, time, momentum, energy
that were useful to us at low speeds for Newtonian
dynamics are a little confusing near light speed

• Relativity needs new conceptual quantities,
such as space-time and energy-momentum

• Trying to make sense of relativity using space and
time separately leads to effects such as time
dilation and length contraction

• In the mathematical treatment of relativity,
space-time and energy-momentum objects are
always considered together

Phy107 Fall 2006 28

The Equivalence Principle

• Led Einstein to postulate the

Equivalence Principle

Clip from

Einstein Nova

special
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Equivalence principle

Accelerating reference

frames are

indistinguishable

from a gravitational

force

Phy107 Fall 2006 30

Try some experiments

Constant velocity

Cannot do any experiment to distinguish

accelerating frame from gravitational field

t=0 t=to t=2to

Floor accelerates upward to meet ball

Constant accel.

t=0 t=to t=2to
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Light follows the same path
Path of light beam in
our frame

Velocity = v

t=0

Velocity = v+ato

t=to

Path of light beam

in accelerating

frame

Velocity = v+2ato

t=2to
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Is light bent by gravity?

• If we can’t distinguish an accelerating

reference frame from gravity…

• and light bends in an accelerating reference

frame…

• then light must bend in a gravitational field

But light doesn’t have any mass.

How can gravity affect light?

Maybe we are confused

about what a straight line is
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Which of these is a straight line?

A. A

B. B

C. C

D. All of them

A

B

C
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Straight is shortest distance

• They are the shortest distances determined by

wrapping string around a globe. On a globe, they

are called ‘great circles’. In general, geodesics.

• This can be a general definition of straight,

and is in fact an intuitive one on curved surfaces

• It is the one Einstein used for the path of all

objects in curved space-time

• The confusion comes in when you don’t know you

are on a curved surface.
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Mass and curvature

• General relativity says

that any mass will give

space-time a curvature

• Motion of objects in

space-time is determined

by that curvature

• Similar distortions to

those we saw when we

tried to draw graphs in

special relativity
Phy107 Fall 2006 36

Idea behind geometric theory

• Matter bends space and time.

• Bending on a two-dimensional
surface is characterized by
curvature at each point

curvature = 1/(radius of curvature)2

• How can we relate curvature to
matter?
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Einstein’s solution

• Einstein guessed that the curvature functions   

(units of 1/m2)

are proportional to

the local energy and momentum densities

(units of kg/m3)

• The proportionality constant from comparison with

Newtonian theory is

where G is Newton's constant

8 G

c 2
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Near the Earth

• The ratio of the curvature of space on the
surface of the Earth to the curvature of the
surface of the Earth is

     ~ 7x10-10

• The curvature of space near Earth is so small
as to be usually unnoticeable.

• But is does make objects accelerate toward
the earth!
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A test of General Relativity

• Can test to see if the path of light appears

curved to us

• Local massive object is the sun

• Can observe apparent position of stars with

and without the sun

• But need to block glare from sun
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Eddington and the Total Eclipse of 1919

Apparent position of star

Actual position

of star

Measure this angle to be

about 1.75 arcseconds
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Eddington’s Eclipse Expedition 1919

• Eddington, British astronomer, went

to Principe Island in the Gulf of

Guinea to observe solar eclipse.

• After months of drought, it was

pouring rain on the day of the eclipse

• Clouds parted just in time, they took

photographic plates showing the

location of stars near the sun.

• Analysis of the photographs back in

the UK produced a deflection in

agreement with the GR prediction


