Physics 535 lecture notes: - 23 Nov 27th, 2007

Homework due Thursday: 10.1, 10.2, 10.6

1) The weak force.

The Feynman rules for the weak force are similar to the electromagnetic force except in that we need a different vertex factor and propagator.

Vertex factor: The vertex factor should be constructed to give a bilinear covariant when sandwiched between the initial and final state particle (bilinear covariant terms were are the Lorentz invariant constructions).  Also the vertex factor should represent the parity violating nature of the weak force.  A combination of a (( and a (((5 term would violate parity since one term is parity even and the other parity odd.  From our study of the neutrino solution to the Dirac equation we know that a (((1-(5) will only interact with the left handed neutrino.   Without the evidence of the neutrino we would have to use a general superposition of these terms (see homework).

Weak vertex factor: 
[image: image1.wmf]
Propagator.  The propagator should have a q2-M2 form in the denominator and a term that represents the sum over the massive vector boson polarization states in the top.  The sum over spin polarization states for the photon gave:  
[image: image2.wmf].  For the massive vector bosons we will get a similar equation with two momentums of the massive vector boson state normalized by the mass.

Weak propagator: 
[image: image3.wmf]
For small q this propagator reduces to: 
[image: image4.wmf]
We could  can identify gW as just ge to give 
[image: image5.wmf], the familiar relationship between the coupling constants of the weak and electromagnetic.  However, we know other important pieces of information.  First the coupling constant for the electromagnetic has been shown experimentally to run, get larger, with energy.  This can be shown explicitly in QED by calculating all the higher order diagrams, which include e+e- pairs forming around a charged particle and changing it’s effective potential or coupling strength.  Effectively this can be taken as a correction to the coupling strength giving a renormalized coupling strength.  


[image: image6.wmf]
Second the electromagnetic and weak forces only have similar strength at high energy.  If the weak force runs differently then it might have a different strength at lower energy.  In fact we would expect the weak force to run differently since the higher order diagrams will involve different particles and different propagators.  Therefore, we will leave this as gW.  Actually the primary modification is going to the weak coupling constant is going to come from how the weak boson interact with the particle that gives them mass, the Higgs boson and otherwise the couplings will run in similar ways.

5) Charged W weak decays and scattering.

For decays we will be at low energy, q, and the matrix elements will be quite simple since there are no possible alternative diagrams in different channels and the propagator is simple.  For instance, for muon decay to an electron and neutrinos.


[image: image7.wmf]
where 
[image: image8.wmf] is the final state spin ½ muon neutrino (same notation as for a massive spin ½ particle since they are both spin ½ solutions of the dirac equation), u(1) is the initial state muon, 
[image: image9.wmf] is the final state electron, and 
[image: image10.wmf] is the final state anti-electron neutrino.
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The terms in front can be identified with the Fermi coupling constant 
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Averaging over the spins of the initial muon, adds a factor of ½, and evaluating the traces


[image: image16.wmf]
This gives similar traces to those we found for the EM force except that we have the gamma 5 terms.  Evaluating this trace:


[image: image17.wmf]
Note that when we average over the initial muon states there are two possibilities and when we sum over the final electron states there are two possibilities.  There is only one possible spin state for the neutrinos.

The exact same matrix element can be written down for neutrino muon scattering to an electron and an electron and a neutron or the inverse. You are just moving one neutrino line from one side to the other and not interchanging any terms.   Though you now have two initial state particles the matrix element does not change since the neutrino only has one spin state so you don’t have to average over it as well.

Note that the convention of  s, t and u factors is not as useful here since you are not exchanging two identical particles from one side of the interaction to the other and also the mass of the W dominates in the propagator, where for the electromagnetic force the mass of the photon or electron was typically negligible and q was in the denominator.

2) Cross sections and lifetimes.

The cross sections and lifetimes for the above processes are quite different.  

In the case of the cross section it’s easy to evaluate since it’s a two to two process.  Consider in CM frame.
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Expanding to second order in the muon mass and taking the two energies as approximately the same at that order.
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and
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Note the trace evaluation gave us 
[image: image22.wmf] and 
[image: image23.wmf] where these vectors are equal and opposite.  Therefore there is no angular dependence and evaluating the scattering cross section is simple!  The cross section will be quite small since the Fermi constant is involved.

In the case of the lifetime of the muon we have three final state particles and therefore have to perform three sets of integrals over the phase space of the final state particles.

There are two interesting steps along the way.

First the differential width, before you integrate over the electron energies.


[image: image24.wmf]
Where E is the energy of the electron and runs from 0 to 
[image: image25.wmf]/2.  This is very interesting in 3 body decays involving new physics particles decaying to visible standard model particles and invisible new physics and standard model particles.  In that case you can figure out the mass of the original particle by looking slope or the end point of the energy distribution of the visible standard model particle.  Many of these endpoint expressions can be derived even in more complex decays.

Second the final width.
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Note that before weak theory was formulated we could only measure 
[image: image27.wmf] from the experiments to measure the lifetime of the muon and didn’t know that we could calculate 
[image: image28.wmf] given the mass of the W boson.  Alternatively we can calcuate 
[image: image29.wmf] given the mass of the W particle.  We can only predict the mass of the W boson once we determine how  
[image: image30.wmf] runs so we can predict it’s value at low energy given 
[image: image31.wmf] and 
[image: image32.wmf] at high energy.

Using (=2.2x10-6 sec and m=0.511MeV
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and using 
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if 
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