
PHYSICS 715

Problem Set 10 Due Friday, April 21, 2006

Reading: Landau and Lifshitz, Secs. 57-61, 63, 106-109

LD 32: Characteristic temperatures for some fermi systems

(a) Calculate the Fermi energies EF and the Fermi temperatures TF for:

(i) liquid 3He (ρ = 0.0823 gm/cm3);

(ii) electrons in tungsten (valence 2, density 19.3 gm/cm3);

(iii) neutrons in a large nucleus (N ≈ 0.6A, radius R = 1.2A1/3 × 10−13 cm);

The work function of tungsten is 4.5 V. The binding energy of the last neutron in
a large nucleus is ≈ 8 MeV. Determine the depths V0 of the average or square-well
potentials seen by:

(iv) the electrons in tungsten;

(v) and the neutrons in the nucleus.

Include a labelled sketch (energy-level diagram) to explain your reasoning.

(b) Long-chain molecules with some mobile electrons give one-dimensional organic
conductors. Derive expressions for pF and EF for a one-dimensional conductor
with n free electrons per unit length. Evaluate EF for an atomic spacing of 2.5 Å
between donor atoms and 0.5 free electron per atom.

LD 33: 3He in 4He: the Fermi gas model for a quantum liquid.

Pure liquid 3He and 3He dissolved in liquid 4He at low temperatures are well described
as ideal Fermi liquids with single-particle energies

E(p) =
p2

2m∗
3

− ε ,

where the effective mass m∗
3 of an atom of 3He and the constant ε both depend on the

liquid in question. (The model was introduced by Landau.)

(a) Estimate the number density n(3He) and the fraction n(3He)/n(4He) of 3He atoms
(nuclear spin 1/2) which can be dissolved in liquid 4He at ∼ 0 K by considering
the equilibrium of the dissolved 3He with liquid 3He. The binding energy of a
single 3He atom in liquid 4He is 2.79 K (temperature units). The binding energy
of a 3He atom in liquid 3He (that is, the minimum energy necessary to remove
an atom from the liquid) is 2.47 K. m∗

3/m3 = 2.34 for 3He dissolved in 4He. The
density of liquid 4He is ρ4 = 0.145 gm/cm3. [Hint: sketch the energy diagrams
for the two systems, and relate the binding energies to the chemical potentials at
0 K.]
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(b) The heat capacity per atom of liquid 3He is c = (3.05 K−1)kT for T ∼ 0. ρ3 =
0.0823 gm/cm2. Calculate the effective mass m∗

3 for 3He atoms in the liquid in
units of m3.

(c) Calculate the vapor pressure in Torr (1 atm = 760 Torr) of gaseous 3He in equi-
librium with liquid 3He for 0 ≤ T ≤ 0.6 K. [Hint: Recall that µ 6= −ε + EF for
T > 0. Include the corrections to µ to order T 2.] Plot log P vs. T . Some data for
comparison are P = 1.2× 10−5, 2.81× 10−2, 0.544 Torr at T = 0.2, 0.4, 0.6 K.

For more information on the quantum liquids see The Physics of Liquid and Solid
Helium, K.H. Bennemann and J.B. Ketterson, editors, especially the article by
G. Baym and C. Pethick, Vol. II, p. 123.

The 1996 Nobel Prize in Physics was awarded to David Lee, Douglas Osheroff,
and Robert Richardson for the discovery of the superfluid phase transition in
liquid 3He (“Last month’s Nobel Prize is this month’s homework problem” – well,
almost – LD), an analog of the superconducting phase transition for electrons in
a superconductor. See the article by Lee and Richardson in the reference above,
Vol. II, p. 287.

LD 34: Pauli paramagnetism: spin paramagnetism in metals.

The spin magnetic moments of electrons in a metal lead to a weak paramagnetism
(Pauli paramagnetism – W. Pauli, Z. Physik 41, 81 (1927)). Consider an ideal electron
gas described by a Hamiltonian with eigenvalues

E±(p) =
p2

2m
± µBB, µB =

|e|h̄
2mc

= −µe

for electron spin projections ±1
2

along the direction of the magnetic field B.

(a) Use the grand canonical approach to calculate the chemical potential µ for the
nearly degenerate electron gas to second order in kT and µBB. Treat the electron
gases with spins up and down as independent, with N = N+ +N− fixed. Assume
the field is weak, µBB � EF , and that kT � EF , and expand appropriately.
Express your result in terms of n and EF .

(b) Derive the leading terms in the expressions for the magnetization and magnetic
susceptibility of the degenerate electron gas, MPauli = −µB(N+−N−)/V , χPauli =
∂MPauli/∂B. Express the results as multiples of µBn, the total magnetic moment
per unit volume. Estimate χPauli for copper at 300 K (valence 1, density 8.94
gm/cm3, atomic weight 63.5).
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LD 35: Stability of a neutron star.

A neutron star can be treated approximately as a sphere of non-relativistic neutrons
which is bound gravitationally, and is prevented from collapsing by the neutron Fermi
pressure.

(a) Assume that the neutron mass density ρ(r) decreases linearly with the radial

coordinate r, ρ(r) = ρ(0)
(
1− r

R

)
, where R is the radius of the star, and estimate

R for a neutron star of mass M = 1.4 M� at T = 0 by calculating the gravitational
pressure at the center, and requiring that it be balanced by the Fermi pressure
of the neutrons. [Hint: Integrate the equation dP/dr = −Gρ(r)M(r)/r2 inward
from r = R to determine P (r). Here M(r) is the total mass inside the radius r.]
Determine the range of radii r for which the neutrons are “cold” from point of
view of statistical mechanics even at a typical temperature of 107 K.

M� = mass of sun = 2× 1033g

G = 6.67× 10−8dynes cm2/g2, mn = 1.68× 10−24g.

(b) Neutron stars contain a small admixture of electrons and protons in equal num-
bers. The following reactions are possible in principle,

n → p + e− + ν̄e,

p + e− → n + νe.

The neutrinos and antineutrinos emitted in these reactions would escape from the
star if the reactions actually occurred, and the star would contract. Determine the
equilibrium proton-to-neutron ratio x = np/nn at T = 0 at the center of the star of
part (a) by using the conditions for “chemical” equilibrium. Treat the electrons as
an ultrarelativistic degenerate Fermi gas with single-particle energies E(p) = pc,
and find their chemical potential µe. µi = mic

2 + EF,i for the nonrelativistic
particles. Note that the neutrinos are not confined in the star. You may assume
that np/nn � 1. Explain why the reactions above do not occur at equilibrium
even though the energy of the star would apparently be lowered by the energy
carried off by the ν̄ or ν. [Hint: Consider the constraints from energy-momentum
conservation.]

mn = 939.566 MeV, mp = 938.272 MeV, me = 0.511 MeV

mν̄ = mν = 0.
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