
PHYSICS 715

Problem Set 11 Due Friday, April 28, 2006

Reading: Landau and Lifshitz, Secs. 62, 64-68, 71-72,

LD 36: The chemical potential and vapor pressure of a Debye solid.

(a) Determine the chemical potential µs of a three-dimensional Debye solid with a
common speed of propagation v for transverse and longitudinal waves. The solid
contains N atoms and has an intrinsic binding energy ε0 per atom (not per mode).
[Hint: use the canonical approach, and calculate µs using the thermodynamic
relation µs = (∂F/∂N)T,V . Be sure to include the zero point energies of oscillation.
It is simplest not to introduce the Debye function or the Debye temperature.]

(b) Obtain an expression for the vapor pressure P of a gas of the same atoms in
equilibrium with the solid. Plot P (in atmospheres, on a scale of powers of 10) as
a function of T for ε0 = 1.4 eV, v = 3000 m/s, n = 6×1028 atoms/m3, and atomic
weight 60. [Note: the Debye model only makes sense at temperatures below the
melting point of the solid. This can be estimated roughly as kTmp ≈ mv2

` /100,
corresponding to thermal displacements of atoms from equilibrium of ∼ 1/10 of
the interatomic spacing. Cover the region from ≈ 200 K below Tmp to Tmp in your
plot.]

LD 37: Adiabatic relations for Fermi and Bose gases and the properties of the
early Universe.

The total mass density of the Universe is observed to equal the critical density ρc ≈
0.9×10−26 kg/m3. Of this, ≈ 5% is now associated with baryons and electrons and 25%
with dark (nonluminous) matter. The latter is thought to consist mainly of massive
nonrelativistic exotic particles. The total matter density is ρm = 2.7 × 10−27 kg/m3.
The remaining 70% of ρc arises almost entirely from dark or vacuum energy ρvac, with a
little “radiative” energy density ρrad from photons and neutrinos. The temperature of
the cosmic blackbody radiation (a relic of the time at which the radiation and matter
were in equilibrium) is 2.75 K. ργ ≡ Eγ/c

2 where Eγ is the photon energy density.

(a) Because of the Hubble expansion, the temperature and energy density in the
Universe are constantly decreasing. Estimate the temperature T at the time at
which the energy densities of matter and radiation were equal, and determine the
ratio R(T )/R0 of the radius of the Universe at temperature T to its present radius
R0. The expansion of the universe may be treated as adiabatic, with the matter,
radiation, and dark energy decoupled or noninteracting.

(b) The Universe, determined to be flat, expands according to the Friedman equation
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where H(t) = (8πGρ/3)1/2 is the Hubble parameter. Determine the relation
between time and temperature in the present era where most of the mass density
comes from nonrelativistic particles and the constant vacuum energy, and in the
“radiation-dominated” era when most of the energy density is associated with
photons and ultrarelativistic particles ρrad. Use the results to estimate

(i) the time in years since the energy densities of matter and radiation were equal
(include the effects of the matter and vacuum energy only); and

(ii) the age of the universe at the time of primordial nucleosynthesis when T was
≈ 109 K.

Assume that the only relativistic particles are photons and the three known neu-
trinos and antineutrinos, each with gν = 1.

Determine the mass density Eγ/c
2 (in gm/cm3) in the blackbody radiation, and

the number density of the baryons at the time of nucleosynthesis. Should we
understand the physics for these conditions? Explain.

LD 38: The Thomas-Fermi model for atoms: a self-consistent mean field model.

The Thomas-Fermi statistical model of the atom describes the electrons in the atom
as a degenerate Fermi gas confined in a (self-consistent) potential φ(r). Suppose φ is
of the form

φ(r) = −Ze2

r
χ
(

r

R

)
, R = constant,

and that the binding energy of the last electron is approximately zero (this is a reason-
able assumption for heavy atoms, for which the binding energies of the core electrons
are very large compared to the binding energy of the last electron).

(a) Determine the electron density distribution n(r) and its normalization assuming
φ(r) to be known, and show that R ∝ Z−1/3 whatever the form of χ.

(b) Determine R/a0 for the (excellent) approximation χ0 =
(
1 + r

R

)−2
, a0 = h̄2/mee

2

= Bohr radius, and compare χ0 numerically with the exact Thomas-Fermi func-
tion χ(x) [see, e.g., Condon and Shortley, Theory of Atomic Spectra, p. 337.

Express r/R in terms of the Thomas-Fermi variable x = 2
(

4
3π

)2/3
Z1/3 r

a0
.

(c) Find the nonlinear differential equation satisfied by χ(x) (the Thomas-Fermi equa-
tion) by requiring that the electrostatic potential e−1φ(r) be related to the charge
density in the atom through Poisson’s equation. What are the boundary con-
ditions on χ? Explain. [Hint: Don’t forget the nuclear charge density. Use
∇2 = r−2 d

dr
r2 d

dr
for a spherically symmetric system with r 6= 0, and recall that

∇2 1
r

= −4πδ3(~r ).]

For a thorough discussion of the Thomas-Fermi model, its extensions, and ap-
plications to a number of interesting problems (proof of the stability of matter,
determination of the size and binding energies of large atoms, the application of
similar ideas to white dwarfs, neutron stars, etc.), see L. Spruch, Rev. Mod. Phys.
63, 151 (1991).
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