
PHYSICS 715

Problem Set 12 Due Friday, May 5, 2006

Reading: Landau and Lifshitz, Secs. 148-150, 152-153
Huang, Secs. 14.1-14.4, 16.1-16.4 (suggested)

FINAL EXAM MONDAY, MAY 8, 12:25 pm

LD 39: Bose-Einstein condensation in an atomic trap.

Bose-Einstein condensation was observed directly in 1995 in dilute atomic gases con-
fined in magnetic traps (see M. H. Anderson et al., Science 269, 198 (1995); C. C.
Bradley et al., Phys. Rev. Lett. 75, 1687 (1995); K. B. Davis et al., Phys. Rev. Lett.
75, 3969 (1995)). The traps are approximately harmonic with characteristic oscillation
frequencies ν of about 150 Hz. The critical temperature Tc at which the condensation
starts varies with the experimental conditions, but is typically ≈ 150 nK.

(a) A mean field model for an ideal Bose gas in an external potential V (r) describes
the gas in a volume d3r at a point r as being in local equilibrium and having
a local chemical potential µ(r) = µ − V (r), where µ is the constant chemical
potential for the entire system. When is this a reasonable approximation? The
number distribution of the particles in the volume d3r is given in this picture by a
standard Bose number distribution with µ replaced by µ(r), and the usual volume
factor replaced by d3r:

dN =
1

eβ(E(p)−µ(r) − 1

d3p d3r

h3
=

1

eβ(H(p,r))−µ − 1

d3p d3r

h3
.

Integrate over all positions and momenta to obtain an expression for the maximum
number of particles N that can be accomodated in a harmonic trap with V =
1
2
mω2r2, and use the result to determine the critical temperature for Bose-Einstein

condensation in terms of N and the parameters in H. Evaluate Tc for N = 4×104

87Rb atoms in a 150 Hz trap (5S1/2 electron and a nucleus with spin s = 3/2 in
a total angular momentum state with F = 2, mF = 2). Compare the result
to that in the first reference above. [Hint: the integral can be reduced to a
standard form by introducing scaled variables r′ = r/λ, p′ = λp, λ = 1/

√
mω,

introducing the the 6-dimensional vector x = (r′,p′), writing the volume element
as d6x, and changing to x2 as the integration variable after performing the angular
integration.]

Determine the number N0 of the atoms in the ground state of the system as a
function of T/Tc, and plot of the ratio N0/N versus T/Tc.
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(b) The ground state wave function for an isotropic oscillator in three dimensions is

ψ0(r) =
1

π3/4r
3/2
0

e−r2/2r2
0 , r0 =

√
h̄

mω
.

Determine the scaled number distribution 1
N

dN
d3(r/r0)

of atoms in the trap and

plot it as a function of r/r0 for N0/N = 0, 0.1, 0.3, 1.0 and 0 ≤ r/r0 ≤ 10.
Evaluate d3N/dr3 at r = 0. Is this a high density? Explain. Compare your
results qualitatively with those in the references above. [Hint: the momentum
integral which appears must be evaluated numerically. Express the integrand in
terms of h̄ω/kTc, T/Tc, and r/r0 to see its structure before doing the integration.
Note that for a given Tc, N = Nc.]

LD 40: The Bragg-Williams approximation for the 3-dimensional Ising model as
a Landau-Ginzburg mean field theory.

Mean field theory (or the Bragg-Williams approximation) gives the expression

m = µ0 tanh

[
µ0H
kT

+
Tc

T

m

µ0

]
for the magnetic moment per spin in an Ising model with particles with magnetic
moment µ0. H is the applied magnetic field. The total magnetization per unit volume
is M = nm, where n is the density of spins.

(a) Show that the magnetic Gibbs function has the form assumed in the Landau-
Ginzburg mean field approach when calculated to order m4 with H retained as
a free variable. [Hint: rewrite the relation above as an equation for H, expand
the inverse hyperbolic tangent which appears to order m3, and determine FM by
integrating the relation H = ∂F

∂M
. GM = F −MH. Do not eliminate H in GM .]

(b) Show that Tc is in fact the critical temperature at which spontaneous magneti-
zation appears at H = 0 in the mean field theory. Determine the temperature
dependence of the magnetization and the magnetic susceptibility χ = ∂M/∂H for
H → 0 to lowest order in |Tc−T | for T > Tc and for T < Tc, and find the critical
exponents β and γ. [Hint: minimize GM at fixed H to determine M . Recall that,
in the Landau approach, one is dealing with a Taylor series expansion in T as well
as M , and replace T by Tc wherever it does not appear in the difference |T − Tc|.
Show that your solution for M actually minimizes GM in the two temperature
regions.]

(c) Plot separate figures giving the approximate expressions for M/nµ0 and χkTc/nµ
2
0

for 0 ≤ T/Tc ≤ 2 and values in the the ranges 0 ≤ M/nµ0 ≤ 2 and 0 ≤
χkTc/nµ

2
0 ≤ 4. Include on the same figures the exact results for these quanti-

ties obtained by solving the equation above and the corresponding equation for
dM/dH (evaluated for H = 0). [Hint: To find the nontrivial solution for M
numerically for T < Tc, find the zero of 1− 1

x
tanh Tc

T
x, x = m/µ0.]
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LD 41: First order phase transitions in the Landau theory.

Consider a mean field theory with order parameter m and Landau free energy

G =
1

2
am2 − 1

3
bm3 +

1

4
cm4, a, b, c > 0.

Sketch the possible shapes for G(m) as b is increased from zero with a and c fixed,
and show that a first order phase transition occurs for b equal to a critical value bc.
Determine bc and the change in the equilibrium value of m at the transition. [Hint:
The scaling m = (2a/c)1/2m′, G = (a2/c)G′ is useful for seeing the structure of G.
Make your sketches for m′ small. To find bc, determine when G has two quadratic
minima with G = 0, but at different values of m.]

LD 42: Critical exponents from a Landau free energy.

The Landau free energy for a hypothetical system is of the form

F (t,m, h) = −hm+
1

4
atm4 +

1

6
bm6, a, b > 0,

where m is the order parameter, t = (T−Tc)/Tc, and the external field h is the variable
conjugate to m. Show that there is a “second order” phase transition at T = Tc for
h = 0. Determine the critical exponents α, β, γ, δ, and show directly that

α+ 2β + γ = 2, δ = 1 +
γ

β
.

Show explicitly that your solution for m actually minimizes F for t > 0 and t < 0.
Keep only the leading behavior in t for t → 0. [Hint: Calculate the thermodynamic

derivatives which determine S and χ =
(

∂h
∂m

)−1

t
, and evaluate them for the value of

m that minimizes F . C = T ∂S
∂T

. To determine δ, minimize F on the critical isotherm
t = 0 for h 6= 0.]

3


