
PHYSICS 715

Problem Set 3 Due Friday, February 10, 2006

Reading: Landau and Lifshitz, Secs. 32–46

LD 8: Particle distributions in high-energy collisions via Gibbs’ approach.

The production of large numbers of particles in high-energy collisions has important
statistical aspects. Suppose that N ≫ 1 pions are produced in a proton-proton colli-
sion. The pions can be treated as massless at high energies, with individual energies

E =
√

p2
⊥ + p2

‖
in natural units with c = 1. Here p⊥ and p‖ are the components of the

pion’s momentum perpendicular and parallel to the beam direction. The average values
E, p⊥ = |p⊥| of the energy and the transverse momentum per particle are known.

(a) Derive the appropriate Gibbs distribution for the particle momenta starting with
the Gibbs entropy and assuming that the intrinsic single-particle density in mo-
mentum space is the relativistically invariant density d3p/E = p⊥dp⊥dp‖dφ/E
rather than d3p. where φ is the angle around the beam direction. Assume that
the particles can be treated as independent (no correlations). You do not need to
determine the new constants that appear.

(b) It is customary in reporting experimental results to replace the hard-to-measure
variable p‖ by the “pseudorapidity” η defined by cosh η = 1/ sin θ (angles are easy
to measure), where p‖ = p⊥ sinh η, E = p⊥ cosh η. Obtain the particle number
distribution dN/dη as a function of η alone, and show that it can be written as

dN

dη
=

2πN/Z

(α + β cosh η)2
.

Obtain explicit formulas, expressed as integrals over η, that would allow you to
determine the constants Z, α, and β from known quantities.

The statistical parameter β is naturally identified with a “partition temperature”,
β = 1/kTp, but this is not to be interpreted as an equilibrium temperature. In an
equilibrium situation, the momentum-space density is just d3p; the extra factor
1/E is appropriate when particles are radiated, and its inclusion represents a
dynamical assumption. For the original application of these ideas, see T.T. Chou,
C.N. Yang, and E. Yen, Phys. Rev. Lett. 54, 510 (1985).

LD 9: Anharmonic perturbations in a classical solid.

The Hamiltonian for N particles oscillating around their equilibrium sites in a cubic
lattice is

H =
N

∑

i=1

Hi, Hi =
p2

i

2m
+ 1

2
mω2q2

i + λq4
i .

(a) Determine the single-particle partition function Z
(0)
1 for the system when λ = 0 so

the anharmonic terms are absent. Use derivatives of Z
(0)
1 to evaluate the averages

〈q2n
i 〉0 over the unperturbed (λ = 0) distribution for arbitrary n.
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(b) Calculate the ratio of single-particle partition functions Z1/Z
(0)
1 correct to second

order in λ assuming that λq4/kT is small on the average, 〈λq4/kT 〉0 ≪ 1. Use the
result to determine the Helmholtz free energy F , the total energy E, the specific
heat C, and the entropy S of the N -oscillator system correct to second order in
λ. [Hint: expand the expressions for Z1 and ln Z1 in powers of λ, and use the
expanded results, taken to order λ2, in the subsequent calculations.]

Note that E decreases even though the addition to the potential is positive. How
is this possible? Is the change in the entropy expected? Explain. How could the
presence of the anharmonic term in the potential be detected in practice? Finally,
for what range of temperatures is the calculation valid? Give a quantitative
criterion in terms of λ, ω,and m, and explain what it means physically in terms
of the motion of the unperturbed oscillators.

LD 10: The central temperature of the sun: Reaction rates in the Maxwell-

Boltzmann distribution.

The total luminosity (radiative energy output) of the sun is L⊙ = 3.86 × 1033 erg/s,
almost all of which is produced in the pp cycle [ p + p → 2H + e+ + ν, e+ + e− → γ′s,
2H + p → 3He + γ, 3He + 3He → 4He + 2p ]. The average energy produced per cycle
which goes into radiation is 26.2 MeV. The first step in the cycle limits the rate. The
reactions occur in the core of the sun (r ≤ 0.2 R⊙, average density of protons ∼ 30
gm/cm3). R⊙ = 6.96 × 1010 cm.

The number of reactions pp → 2H + e+ + ν per unit volume per second is dn/dt =
1
2
n2

p〈σv〉, where np is the proton number density, v is the relative velocity of the protons,
and σ is the reaction cross section,

σ =
2Se−2πη

mpv2
, η =

e2

h̄v
= α

c

v
, S = 6.5 × 10−55 cm2erg , α ≈ 1/137

in the customary cgs units. The average is over the normalized two-particle Maxwell-
Boltzmann momentum distribution. The counting of pairs is already included in the
factor 1

2
n2

p in dn/dt. Estimate the average temperature of the solar core.

Hints: Use relative and center-of-mass variables p = 1
2
(p1 − p2), P = p1 + p2 and

integrate first over the center-of-mass variables. The remaining integrand in 〈σv〉 is
sharply peaked as a function of p, the magnitude of the relative momentum, as a sketch
will show. Determine the value of the momentum pm at the peak, and change to p/pm

as a new variable to simplify the algebra. Finally, expand φ(p), the logarithm of the
integrand, to second order around its value at the peak and estimate the integral using
the resulting Gaussian approximation for the integrand. It will be helpful in getting
the final numbers to express the temperature in units of 106K, T = T6 × 106, identify
the most important term in the expression for L⊙, and find T6 by iteration.

For an original reference, see Critchfield and Bethe, Phys. Rev. 54, 248 (1938), a fairly
early paper in Bethe’s Nobel Prize work on stellar energy. J. Bahcall and R. Ulrich,
Rev. Mod. Phys. 60, 297 (1988), Sec. V, give the results of a modern calculation.
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