
PHYSICS 715

Problem Set 7 Due Friday, March 24, 2006

Reading: Landau and Lifshitz, Secs. 33, 45–52

LD 22: Fermi, Bose, and Schrödinger statistics and the factorization properties

of the canonical partition function ZN

(a) A system containingN distinguishable particles has a set of discrete single-particle
energy levels ǫ1 < ǫ2 < ǫ3 · · · with degeneracies g1, g2, g3, . . . . The total energy
Eα is the sum of the energies of the occupied levels. The quantum mechanical
canonical partition function ZN is defined as the sum of e−βEα over all the energy
eigenstates of the system. Label the states in terms of the occupation numbers
for the different single-particle states, determine the number of ways of getting
each completely labeled energy, and show that ZN factors, with ZN = ZN

1 . [The
multinomial theorem will be useful. See, e.g., Abramowitz and Stegun, Handbook

of Mathematical Functions, p. 823.]

(b) Construct the normalized wave functions Ψ(1, 2) allowed for two-particle Schrödinger
(distinguishable particle), Bose, and Fermi systems which have just two single-
particle energy levels ǫ1 < ǫ2 with degeneracies g1 = g2 = 1 and corresponding
single-particle wave functions ψ1 and ψ2. Express Z2 as the sum of the matrix
elements 〈Ψ(1, 2)|e−β(H1+H2)|Ψ(1, 2)〉 over the allowed states for each case, and
show explicitly that Z2 does not factor for Bose and Fermi statistics.

LD 23: Trace identities and derivative tricks for quantum problems: 〈q2〉 for the

quantum oscillator.

(a) Suppose that a (finite) operator A(λ) depends on a parameter λ. Show from the
properties of the trace operation that

Tr
dA(λ)

dλ
eA(λ) =

d

dλ
Tr eA(λ),

whether or not A and dA/dλ commute.

(b) Use the result in (a) to determine the average value of q2 for the quantum oscillator
as a function of T . The oscillator Hamiltonian is

Ĥ = − h̄2

2m

d2

dq2
+

1

2
mω2q2.

Determine and explain the limiting values of 〈q2〉 for kT ≫ h̄ω and kT ≪ h̄ω.
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LD 24: Brillouin paramagnetism and the classical Langevin limit.

A paramagnetic solid (Brillouin paramagnet) consists of a lattice of atoms of spin J .
Atoms at different lattice sites are distinguishable. There are n = N/V atoms per unit
volume. H =

∑

iHi, where the single-particle Hamiltonian for an atom with magnetic
quantum number mi in a magnetic field H is

Hi = gµBHmi.

mi can take any of the values −J,−J + 1, . . . , J .

(a) Calculate the canonical partition function ZN and determine the mean mag-
netization of the solid. [The magnetization M is the average magnetic mo-
ment per unit volume, M = 〈M/V 〉, where M = −∑

i gµBmi. The relation
∑N

0 x
n = (1− xN+1)/(1−x), |x| < 1 will be useful. Express your results in terms

of the variable x = gµBH/kT .]

(b) Calculate the magnetic susceptibility χ = ∂M
∂H

. Plot the behavior of χ as a function
of x, and determine how it approaches its limits for x → 0, ∞. Thus, determine
how χ(T ) behaves for T → ∞, 0 for fixed H. Explain physically why χ behaves
as it does in these limits.

(c) The magnetic moment of an atom is defined as µ = gµBJ . Show that the Bril-
louin magnetization of part (a) reduces in the limit J ≫ 1, µ fixed, to the clas-
sical Langevin result for the magnetization of a set of intrinsic magnetic dipoles
µ. The classical problem is defined by the Hamiltonian H = −∑

i µi · H =
−∑

i µH cos θi. See Probs. LD 13 (b), (c) for the analog for electric dipoles.

LD 25: The classical limit of the quantum mechanical rotator: the “freezing out”

of rotational degrees of freedom.

The rotational energy of a symmetric rotator (molecule) with principal moments of
inertia I3 and I2 = I1 is given quantum mechanically by

Eℓ,k,m =
h2

8π2I1
ℓ(ℓ+ 1) +

h2

8π2I1I3
(I1 − I3)k

2,

where ℓ, k, m label the rotational quantum states of the molecule. Here ℓ is the total
angular momentum, ℓ = 0, 1, . . . , and m and k are the projections of the angular
momentum ℓ on the spatial z axis and the symmetry axis of the molecule (the body
axis) respectively, k = −ℓ,−ℓ + 1, . . . , ℓ, and m = −ℓ,−ℓ+ 1, . . . , ℓ.

(a) Show that the quantum mechanical partition function may be approximated at
sufficiently high temperature by the classical result,

Zcl =
8π2

h3
(2πkT I1)(2πkT I3)

1/2,
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hence, that the energy of rotation per molecule approaches the classical result
Erot = 3

2
kT . [Hint: make approximations that you can (and do) justify, and note

that
∫

∞

0 e−aterf(
√
bt )dt = 1

a

√

b
a+b

, where

erf(z) =
1√
π

∫ z

−z
e−t2dt

is the error function. It will clarify the temperature dependence of the initial
expression to introduce two characteristic temperatures Θi = h2/8π2IikB.]

(b) Suppose I3 ≪ I1. Show that rotations around the body axis “freeze out” (are
not excited in the quantum problem) at temperatures at which the remaining
rotational modes may still be treated classically. Obtain the modified form of
Zrot appropriate to this limit, and show how the change affects the rotational
specific heat of a gas of these molecules.

Estimate the temperatures at which (i), rotations around body axis, and (ii),
the remaining rotational modes, freeze out for CO. [Hint: Rotations around the
body axis can be described approximately as excitations of single-electron states.
A typical radius for the outer electron distribution around the symmetry axis is
0.75 Å. Note that the dissociation energy of CO is 11 eV.]
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