
PHYSICS 715

Problem Set 8 Due Friday, March 31, 2006

Reading: Landau and Lifshitz, Secs. 81–86

LD 26: The high temperature behavior of Zrot: Euler-Maclaurin summation and

Mulholland’s formula.

The quantum corrections to the rotational partition function of a heteronuclear di-
atomic molecule with characteristic rotational temperature Θr can be evaluated for
T > Θr by applying the Euler-Maclaurin summation formula to the series for Zrot.

(a) Derive the first three terms in the high-temperature expansion for Zrot (Mulhol-
land’s formula). [See, e.g., Abramowitz and Stegun, Handbook of Mathematical

Functions, Sec. 3.6.28, for the Euler-Maclaurin formula. Be sure to keep enough
of the derivative terms, and expand all results to a consistent order in Θrot/T .]

(b) Use your result to determine Srot and crot, the rotational specific heat per molecule,
to the same order.

LD 27: The rotational partition function and specific heat of H+
2 : the remarkable

effect of statistics.

(a) The proton has spin s = 1
2
. The equilibrium separation of the protons in the H+

2

molecule is 1.06 Å. Obtain an expression for the rotational partition function of H+
2

in terms of appropriate statistical weights and the rotational partition functions
Zeven and Zodd, defined as sums over even and odd values of ℓ. Explain your
reasoning carefully.

Calculate Zeven and Zodd numerically for 0 ≤ T/Θr ≤ 4 by using the series expan-
sions carried to a sufficient number of terms. Plot the results and compare with
that given by the appropriate multiple of Mulholland’s formula. Mark the boiling
points of H2 (20.3 K) and N2 (77.4 K) for reference. Plot in addition the ratio
ZS=1/ZS=0 of the equilibrium fractions of H+

2 molecules with total nuclear spins
S = 0, 1, and comment on the limiting behaviors for T → 0, ∞.

(b) Calculate the rotational specific heat per molecule crot numerically using the series
expansion for Zrot. Plot crot carefully for H+

2 as a function of T/Θr for 0 ≤ T/Θr ≤
4. Determine the limiting forms of crot (not just the limits) analytically for T ≫ Θr

and T ≪ Θr, and compare them with the numerical result. For what range of
temperatures (in K) is the system essentially classical? [Hint: the analytic result
for crot is simple when expressed in terms of Zrot and its derivatives with respect
to x = Θr/T . Write out the series defining the derivatives you need, and expand
as appropriate in getting the analytic result for T → 0.]
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LD 28: Determining past climates: isotope concentrations and thermal histories

The determination of average paleotemperatures and temperature fluctuations is of
great interest, e.g., for tracking the thermal history of the oceans during the ice ages, or
for the detection of long-term climatic changes. One method involves the measurement
of the relative concentrations of the stable isotopes 18O and 16O in glacial ice cores or
in rock cores from precipitates such as calcite (CaCO3). The mean ratio of 18O to 16O
in the atmosphere and ocean is ∼ 0.2%. Since CaCO3 precipitates mainly as animal
shells, the ratio of 18O to 16O in the rock reflects the local ratio near the ocean surface
at the time the shells were formed. Similarly, the ratio of 18O to 16O in glacial ice
reflects the local ratio in atmospheric water vapor when the snow fell. The ratios are
different in the ocean and atmosphere and are observed to vary with temperature.

(a) Show that there can no such isotope effect classically for equilibrium systems in
which the molecular Hamiltonian has the standard form

H i =
∑

isotopes I

NI∑

j=1

p2
j

2mI

+ U i({q}),

in each phase i. Here mI is the mass of a molecule containing the isotope I.
The potentials U i(q) are determined by the electronic properties of the molecules
and are independent of the isotope in question. Show, in particular, that the
equilibrium ratios n i′

I /n i
I of the number densities in phases i′ and i are the same

for all isotopes. [Hint: Write the configuration integral as
∫

Πjd
3qj e−βU i(q)/V N

i

where Vi is the volume of phase i. Show that µ i
I = kT ln n i

I λ3
I + µ i

0 where µ i
0

is the same for all isotopes of a given substance in phase i, then consider the
conditions for equilibrium between phases. Note that the configuration integral
is independent of the division of the molecules between the isotopes I.]

(b) Suppose the potential U(({q}) = −U0 in phase 1, U0 constant, and U(({q}) = 0
in phase 2. Calculate the number of molecules I that cross from region 1 to region
2 per unit area per second (the number flux), and the number that cross from
region 2 to region 1. Show that the condition of equal fluxes in the two directions
at a common temperature T leads to a result for the ratio n 1

I /n 2
I equivalent

to that obtained in (a). [Hint: It will be useful to consider the flow across an
infinitesimal area dA and to change to the energy associated with the motion
perpendicular to dA as a variable in evaluating an integral you will encounter.]

(c) The result of (a) shows that any isotope effect must involve nonequilibrium or
quantum effects. The ocean and atmosphere are not in overall equilibrium be-
cause of rapid atmospheric motions, heat transport, temperature gradients in the
atmosphere, etc. Use the results from (b) for nonequilibruium situations to show
that temperature-independent changes in isotope ratios occur (Rayleigh fraction-
ation). Use the result to construct a qualitative argument that shows how the
18O/16O ratio should change with temperature in sea water, atmospheric water
vapor, and snow during a cold glacial period. Take into account the effects of
evaporation and precipitation and the continued lack of equilibrium. What are
the expected effects on the ratio in glacial ice deposited as snow, and on the
CaCO3 in animal shells deposited from the ocean?
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