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EXPERIMENT 5:                    DC AND AC BRIDGE CIRCUITS                                            10/7/03 
 
This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements 
and the use of error propagation to determine the uncertainty of a measurement. The bridge circuit will 
be used to measure an unknown resistance to an accuracy of about 0.1%. We will also construct an AC 
bridge, and use it to determine the inductance of an unknown inductor. 
 
Before coming to the lab, read the information on error propagation in the appendix to this experiment. 
You can also do step 1 in both the Wheatstone Bridge and AC Bridge sections. 
 
 
THE WHEATSTONE BRIDGE 
 
The Wheatstone Bridge circuit can be used to measure an unknown resistance in terms of three known 
resistances by adjusting one or more of the known resistors to obtain a zero signal (i.e. a “null” reading) 
on a meter. Such a measurement permits high precision since a very sensitive meter can be used to 
determine the null condition. The null method also reduces or 
eliminates sensitivity to a variety of effects (for example, 
fluctuations in the power supply voltage) which could lead to 
errors in more conventional measurements. 
 
1. Derive the balance condition for the Wheatstone Bridge. 
2. Construct the bridge circuit using the following 
components: 
 R1 =  ± 0.05% accuracy General Radio resistance box    
        (1Ω steps). 
 
 R2  =  ± 0.5% accuracy Eico resistance box. 
 
 R3 =  ± 0.05% accuracy General Radio resistance box      
        (0.1Ω steps). 
 
 R4 =  ± 0.5% accuracy Eico box (RE) in parallel with 
        a ± 10% Heathkit resistance box (RH). 
 
        V0 = Lambda power supply, set to about 4 V. 
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For the null detector use a DMM (as a voltmeter). Start by setting R1 = RE = 950Ω,  R2 = 1000Ω, 
R3 = 900Ω and RH = 1 MΩ. Then adjust any or all of the resistors (make only small changes, and 
keep RH > 200 kΩ) to balance the bridge as accurately as possible. 
Record all the final resistance values and the DMM reading. 

 
3. Nov calculate the ratios R1/R3 and R2/R4 from the resistor settings. In addition, calculate the 

uncertainty in each of the two ratios, assuming that the accuracies listed in part 2 are correct. To 
find the uncertainty in R2/R4 you will first need to calculate the uncertainty in R4 (see appendix). 

 
According to the balance equation R1/R3 and R2/R4 should be equal. Do your calculated ratios 
agree to within their calculated uncertainties? 

 
4. For this part we need to make a distinction between the calculated ratios (the values you just 

obtained) and the true ratios (the values you would obtain for R1/R3 and R2/R4 if you somehow 
knew all the resistances exactly). What we want to do in this step is estimate how accurately the 
bridge has been balanced; in other words, how nearly equal are the true values of R1/R3 and R2/R4, 
once you have balanced the bridge as accurately as possible. To answer this question what we will 
do is change one of the ratios (R1/R3) by a small amount and see what effect this has on the null 
reading. The procedure is as follows. Starting with the bridge balanced change the value of R3 by a 
small amount (e.g. a few tenths of an ohm) and observe what effect this has on the DMM reading. 
By how much did you change R1/R3? How large vas the change in the DMM reading? Roughly 
how well do you think you can balance the bridge (in other words, how close to zero do you 
actually get when the bridge is balanced)? Call this the “null error”. How large a change in R1/R3 
does the null error correspond to? From this information estimate how nearly equal R1/R3 and 
R2/R4 are at the balance point. How does the difference between the true values of R1/R3 and R2/R4 
compare with the uncertainties in the calculated values of R1/R3 and R2/R4 (from part 3)? 

 
How accurately do you know the ratio R2/R4? 

 
5. Now substitute an “unknown” resistor RU = 680Ω for R1 (use a second Heathkit ± 10% resistance 

box for the unknown). Rebalance the bridge by adjusting R3. Do not change R2 or R4. Calculate RU 
from the balance equation, RU = R3 x (R2/R4). Then calculate the uncertainty in RU. 

 
6. Finally, measure RU directly with a DMM. Compare all your results including the estimated errors 

in a table. The accuracy of the DMM measurement can be found in Appendix C. 
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Next we will use the AC bridge circuit shown to measure an unknown inductor (with L somewhere 
between 15 and 25 mH). 
1. Show that when the bridge is balanced the   resistance R4 and inductance L are given by  
        R4 = R2 R3 /R1 and L = R2R3 C. Although these results are independent of ω the determination of L       
        is not very precise for low frequencies because   
        the voltage across L is too small. We will use a        
        value of ω that makes the magnitudes of the     
        impedances of R4 and L comparable. 
 
2. Construct the bridge with R1  R2 2000Ω and   
         R3 R4 150Ω. Use the high precision   
        (General Radio) resistors for R2 and R3 and the   
        Eico resistors for R1 and R4. Use the function  
        generator with f 1 kHz and with the amplitude  
        adjusted for the maximum output as the voltage  
        source. Set the DMM null meter to read AC  
        voltage. Now adjust C and R1 to minimize the   
        DMM reading. (Because of noise pickup you may only be able  to null the bridge to a few mV.  
        You can test whether you have nulled the f = 1 kHz signal by turning the function generator  
        amplitude to zero and observing what happens to the null reading.) Record the results and calculate  
        L. Also, record the number on the inductor board. 
 
3. Change f by a factor of 2 and rebalance the bridge to verify that the balance equations do not 

depend on ω. 
 
4. The last step is to estimate the uncertainty in L. With f back at 1 kHz, vary C from the null setting 

and make a rough estimate of how accurately C can be set. Nov estimate the uncertainty in L 
taking into account the accuracy of the capacitance box itself (± 1%) as well as the accuracy with 
which C can be set (the uncertainties in R2 and R3 are negligible). 

 
5. Check with your lab instructor to get the actual value of L for the board you used. How close was 

your measurement to the actual value? 
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                                                              APPENDIX 
 
In physics experiments we often encounter situations in which we want to determine some quantity Q 
which depends in a known way on two or more separately measured quantities, x1, …. xn. Now suppose 
we know (or can estimate) the uncertainties in the n measured quantities and want to calculate the 
uncertainty in Q. The correct way to do this is to use the formula: 
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where f is the function we use to calculate Q from x1, ..., xn  [i.e. Q = f(xi, …xn)]. 
 
As an example, suppose the quantity Q is the ratio of two measured quantities (Q = A/B). Then the 

formula for the uncertainty in Q turns out to be: 
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Next lets consider a slightly more complicated example. In the present experiment R4 in the Wheatstone 
Bridge consists of RE (0.5% accuracy) in parallel with RH (10% accuracy), so that: 
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Applying the formula for ∆Q to R4, it is easy to show that: 
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Nov typically RE = 1 kΩ and RH = 200 kΩ. Note that although the fractional error in RH is large, its 
error doesn’t contribute much to the total error in R4 since it is multiplied by the square of a factor 
(R4/RH   1/200) that is small compared to 1. 


