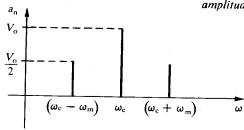


- (a) unmodulated 930 kHz carrier wave
- (b) carrier with 100% 400 Hz amplitude modulation



(c) Fourier components of 100% modulated carrier of (b)

FIGURE 3.8 Amplitude modulation.

say, from 929.9 to 930.1 kHz, a bandwidth of 0.2 kHz or 200 Hz, no 400-Hz signal would be present in the receiver.

Let us Fourier analyze the amplitude-modulated carrier.

$$v(t) = V_0(1 + M\cos\omega_{\rm m}t)\cos\omega_{\rm c}t \qquad (3.26)$$

where $\omega_{\rm m}=2\pi f_{\rm m}$, $f_{\rm m}=400$ Hz, $\omega_{\rm c}=2\pi f_{\rm c}$, $f_{\rm c}=930$ kHz, and M is the degree of modulation, $0\leq M\leq 1$. M is 1.0 in Fig. 3.8(b). The modulated carrier wave v(t) is an even function, so only cosine terms will be present in the Fourier expansion. Also, we can see that $a_0=0$, because the average dc level is zero. Thus

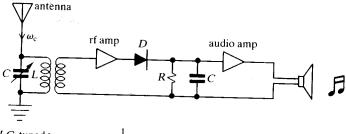
$$v(t) = \sum_{n=1}^{\infty} a_n \cos n\omega t$$
 (3.27)

where

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} v(t) \cos n\omega t \, dt$$
 (3.28)

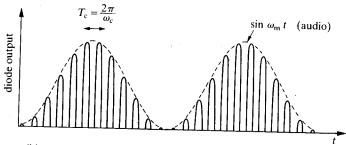
Choose $T = 2\pi/\omega_{\rm m} \equiv T_{\rm m}$; this is the shortest time interval over which v(t) is periodic. Substituting (3.26) in (3.28) yields, with $\omega = \omega_{\rm m}$,

$$a_n = \frac{4}{T_m} \int_0^{T_m/2} V_0(1 + M \cos \omega_m t) \cos \omega_c t \cos n\omega_m t dt$$



LC tuned to ω_c : $\omega_c = \frac{1}{\sqrt{LC}}$

(a) circuit



(b) output of diode before passing through the RC low-pass filter

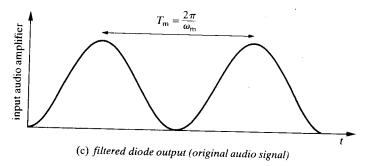


FIGURE 3.10 Simple diode AM receiver.

RC filter that passes only the audio envelope at $\omega_{\rm m}$, provided

$$T_{\rm m} \gg RC \gg T_{\rm c}$$
 where $T_{\rm m} = \frac{2\pi}{\omega_{\rm m}}$ and $T_{\rm c} = \frac{2\pi}{\omega_{\rm c}}$

Thus, the filter output is the same as the original audio modulation of the transmitted wave.

Another type of amplitude modulation widely used in long-range noncommercial radio communication is *single sideband* (SSB). In this technique only one set of sidebands is actually transmitted, not the carrier

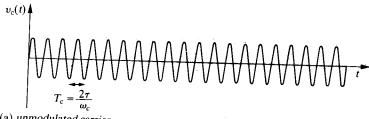
wave frequency is

$$\omega = \omega_{\rm c} + \Delta\omega\cos\omega_{\rm m}t\tag{3.39}$$

where $\Delta \omega$ is the maximum frequency swing (the deviation) of the carrier. The FM carrier wave is then

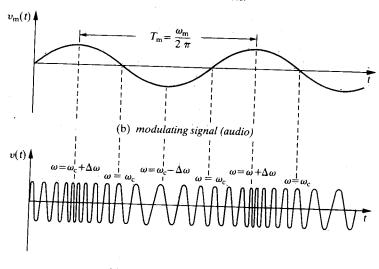
$$v_{c}(t) = V_{0} \cos \omega t = V_{0} \cos[\omega_{c} t + \Delta \omega \cos \omega_{m} t]$$
 (3.40)

The carrier frequency swings from $\omega_c + \Delta \omega$ to $\omega_c - \Delta \omega$, as shown in Fig. 3.13. In commercial FM radio $\Delta\omega/2\pi$ is limited to 75 kHz, so the maximum carrier-frequency swing is ± 75 kHz around $\omega_c/2\pi$; for example, if $\omega_c/2\pi$ $f_c = 100 \text{ MHz}$, then the swing is from 100.075 to 99.925 MHz. Commercial FM stations are assigned frequency f_c every 200 kHz, so their signals do not overlap. Notice that the frequency swing of the carrier is determined by the amplitude $(\Delta\omega)$ of the audio modulation, whereas the audio modulation frequency (ω_m) determines how often the carrier frequency swings up and



(a) unmodulated carrier

(a) unmodulated carrier



(c) frequency modulated carrier

FIGURE 3.13 FM radio waveforms.